Search results for "Sensible heat"

showing 10 items of 26 documents

A critical analysis of three remote sensing-based actual evapotranspiration assessment methods over sparse crops agricultural areas

2010

During last two decades the increasing availability of remotely sensed acquisitions in the thermal infrared part of the spectrum has encouraged hydrologist community to develop models and methodologies based on these kind of data. The aim of this paper is to compare three methods developed to assess the actual evapotranspiration spatial distribution by means of remote sensing data. The comparison was focused on the differences between the "single" (SEBAL) and "two" source (TSEB) surface energy balance approaches and the S-SEBI semi-empirical method. The first assumes a semiempirical internal calibration for the sensible heat flux assessment; the second uses a physically based approach in or…

Mediterranean climateIrrigationSEBALresidual surface energy balance modelsSettore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologiaactual evapotranspiration residual surface energy balance models airborne imagesSensible heatSpatial distributionVineyardHeat fluxEvapotranspirationEnvironmental scienceSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestaliactual evapotranspirationairborne imagesRemote sensing
researchProduct

Radiative surface temperature and convective flux calculation over crop canopies

1988

The analysis presented in this paper aims at a better understanding of the potential role of radiative temperature, as measured by a radiometer over crops, in sensible heat flux calculation. Defining radiative temperature as the mean temperature of the surfaces viewed by the radiometer (leaves and soil surface) and assuming that an Ohm's law type formula can be used to express sensible heat flux as a function of the difference between air temperature and radiative temperature, the aerodynamic resistance which divides this temperature difference has been analytically defined. The parameters which appear in the resistance expression depend essentially on wind velocity and canopy structure but…

Atmospheric ScienceCOUVERT VEGETAL010504 meteorology & atmospheric sciencesMeteorologyPlanetary boundary layer[SDV]Life Sciences [q-bio]Sensible heat01 natural sciencesPhysics::GeophysicsRadiative fluxRadiative transferMean radiant temperatureFLUX THERMIQUEPhysics::Atmospheric and Oceanic PhysicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesTEMPERATURE DE SURFACEPhysicsRadiometerBIOCLIMATOLOGIE04 agricultural and veterinary sciencesMechanicsMODELISATION[SDV] Life Sciences [q-bio]Heat fluxCONVECTIONHeat transfer040103 agronomy & agriculture0401 agriculture forestry and fisheries
researchProduct

The FLUXCOM ensemble of global land-atmosphere energy fluxes

2019

Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For…

FOS: Computer and information sciencesStatistics and ProbabilityComputer Science - Machine LearningData Descriptor010504 meteorology & atmospheric sciencesMeteorology0208 environmental biotechnologyEnergy balanceEddy covarianceFOS: Physical sciencesEnergy fluxMachine Learning (stat.ML)02 engineering and technologySensible heatLibrary and Information Sciences01 natural sciences7. Clean energyMachine Learning (cs.LG)EducationFluxNetStatistics - Machine LearningEvapotranspirationLatent heatlcsh:Science0105 earth and related environmental sciences020801 environmental engineeringComputer Science ApplicationsMetadataEnvironmental sciencesPhysics - Atmospheric and Oceanic Physics13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Environmental sciencelcsh:QStatistics Probability and UncertaintyHydrologyClimate sciencesInformation SystemsScientific Data
researchProduct

Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land‐surface temperature observations

2016

Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp‐like pattern of the air temperature measured at high frequency. A SR‐based method to estimate sensible heat flux (HSR‐LST) requiring only low‐frequency measurements of the air temperature, horizontal mean wind speed, and land‐surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR‐LST assumes that the mean ramp amplitude can be inferred from the difference between land‐surface temperature and mean air temperature through a linear relationship and that the ramp freq…

in situ sensingSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiatemperatureSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalithermal dataolive grovesurface renewalsensible heat fluxSettore ICAR/06 - Topografia E CartografiaWater Science and Technology
researchProduct

Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations

2012

Abstract The two-source energy balance (TSEB) model uses remotely sensed maps of land–surface temperature (LST) along with local air temperature estimates at a nominal blending height to model heat and water fluxes across a landscape, partitioned between dual sources of canopy and soil. For operational implementation of TSEB, however, it is often difficult to obtain representative air temperature data that are compatible with the LST retrievals, which may themselves have residual errors due to atmospheric and emissivity corrections. To address this issue, two different strategies in applying the TSEB model without requiring local air temperature data were tested over a typical Mediterranean…

Actual evapotranspirationSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaMultispectral imageEnergy balanceSoil ScienceGeologySensible heatResidualTemperature gradientBoundary layerHeat fluxEmissivityTwo-source energy balanceEnvironmental scienceComputers in Earth SciencesMediterranean climateThermal remote sensingTwo-source energy balance Actual evapotranspiration Mediterranean climate Thermal remote sensingRemote sensing
researchProduct

Combining a Two-Source Patch Model with Satellite Data to Monitor Daily Evapotranspiration at a Regional Scale

2008

In this work, we present a micro-meteorological approach for estimating surface energy fluxes that can be operationally used together with satellite images to monitor surface energy fluxes at a regional scale. In particular we will focus on the retrieval of daily evapotranspiration. The feasibility of the model is explored at a local scale using data collected over a maize crop in Beltsville, Maryland, USA, and a boreal forest in Sodankyla, Finland. Comparison of the results with ground measurements shows errors between plusmn15 and plusmn50 W m-2 for the retrieval of net radiation, soil heat flux, and sensible and latent heat fluxes in both sites. A methodology to apply the model to Landsa…

MeteorologyPlanetary boundary layerEvapotranspirationLatent heatSatelliteVegetationSensible heatScale (map)Atmospheric temperatureRemote sensingIGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

2010

Abstract. For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation co…

Actual evapotranspirationEddy covarianceSensible heatlcsh:TechnologyWind speedlcsh:TD1-1066law.inventionWind profile power lawlawSemi-arid areaTwo-source energy balanceSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliLeaf area indexlcsh:Environmental technology. Sanitary engineeringlcsh:Environmental sciencesRemote sensinglcsh:GE1-350lcsh:THigh spatial resolutionSettore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologialcsh:Geography. Anthropology. RecreationVegetationHeat fluxlcsh:GScintillometerEnvironmental scienceSparse canopyWind speed extinction
researchProduct

Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region

2008

Summary The increasing interest of hydrological, climatic and meteorological models in the different components of the surface energy balance has encouraged the development of operational methods for estimating surface energy fluxes at a regional scale. In this paper, a sequence of three high-resolution satellite-based surface energy fluxes images are analyzed over an extensive area with a large variety of land uses. Two images from Landsat 7-ETM+ (1999, 2002) and one from Landsat 5-TM (2004) are collected covering the whole Basilicata region (Southern Italy). A Simplified version of a Two-Source Energy Balance (STSEB) model is used to retrieve the surface sensible heat flux. A balance betw…

Atmospheric radiative transfer codesMODTRANEvapotranspirationEnergy balanceEnvironmental scienceSatelliteLand coverSensible heatScale (map)Water Science and TechnologyRemote sensingJournal of Hydrology
researchProduct

Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Re…

2021

The current study evaluates the ability of the Weather Research and Forecasting Model (WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore, we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR), and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options strongly affect the energy partiti…

Drag coefficientsurface fluxesGeography Planning and DevelopmentMesoscale meteorologyTJ807-830Numerical weather predictionnumerical weather predictionManagement Monitoring Policy and LawSensible heatTD194-195Atmospheric sciencesRenewable energy sourcesLatent heatGE1-350Surface layerLand surface modelsland surface–atmosphere interactionsEnvironmental effects of industries and plantsRenewable Energy Sustainability and the EnvironmentSurface fluxesNoahFísica de la TierraLand surface–atmosphere interactionsNumerical weather predictionEnvironmental sciencesHeat fluxWRF modelWeather Research and Forecasting Modelland surface modelsTeoría de la Señal y ComunicacionesNoah-MPGeografia
researchProduct

Surface soil humidity retrieval by means of a semi-empirical coupled SAR model

2010

In the last years, the availability of new technologies of Earth Observation encouraged researches to use integrated approaches for environmental monitoring. Even for agro-hydrological applications, remotely sensed data are available on wide areas allowing the retrieval of cost-effective and representative estimation of high spatial and temporal variability of the soil-vegetation system variables. In particular, soil water content plays an important role determining the partition of precipitation between surface runoff and infiltration and, moreover, influences the distribution of the incoming radiation between latent and sensible heat flux. As a consequence, distributed soil water content …

Earth observationMeteorologyCloud coverSettore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologiamulti-polarized dataL bandSensible heatactive microwavecoupled modellaw.inventionInfiltration (hydrology)lawSoil waterSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental scienceSoil moistureRadarSurface runoffWater contentSoil moisture active microwave multi-polarized data L band coupled model.Settore ICAR/06 - Topografia E CartografiaRemote sensingRemote Sensing for Agriculture, Ecosystems, and Hydrology XII
researchProduct